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SUMMARY 
 
The modulus of elasticity and the shear modulus can be calculated from the free 
vibrations of bar-shaped specimens. Therefore, a review of the theoretical bases 
for the calculation of the moduli is given. Measurements using the Grindo-
Sonic device and a device developed at the FMPA were carried out and 
compared. Both devices turned out to be very efficient, although their features 
are quite different. 
 
ZUSAMMENFASSUNG 
 
Elastizitäts- und Schermoduln können aus den Eigenschwingungen von 
stabförmigen Probekörpern berechnet werden. Dazu wird eine Übersicht über 
die theoretischen Grundlagen der Berechnung gegeben. Mit dem Grindo-Sonic-
Gerät und mit einer an der FMPA entwickelten Anlage wurden Messungen 
gemacht und verglichen. Beide Geräte erwiesen sich als sehr leistungsfähig, 
obwohl ihre Eigenschaften recht verschieden sind. 
 
RÉSUMÉ 
 
Les modules d’élasticité et de rigidité peuvent être calculés à partir des 
vibrations libres issues des specimens en forme de barre. Dans ce but, on a 
présenté un survol des bases pour le calcul théorique de ces modules. Au 
FMPA, un nouveau dispositif a été développé permettant la mesure de ces 
modules. Ce dispositif a été comparé au dispositif Grindo-Sonic. Les deux 



dispositifs ont permis une évaluation très satisfaisante des modules, bien qu’ils 
présentent des caracteristiques très differentes.  
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NOTATIONS 
 
E modulus of elasticity (Young's modulus) 
G shear modulus (modulus of rigidity) 
ν Poisson's ratio 
ftors, flong, fflex resonant frequency of torsional, longitudinal, flexural vibration 
k harmonic order (k=1 for the fundamental mode) 
m mass of the specimen 
l length of the specimen 
b width 
h height (direction of vibration) 
r radius 
A cross-section area 
I moment of inertia of cross-section 
R, C, T correction factors 
vp, vs compression wave velocity, shear wave velocity 
 
 
1. INTRODUCTION 
 
In contrast to the compressive strength which is usually determined to describe 
the behaviour of concrete specimens under loading conditions, the elastic 
parameters of concrete are physical constants. As a consequence, the elastic 
parameters can be derived from measurements of various physical properties of 
the specimen, such as wave velocities or resonance frequencies. These 
properties can be measured by non-destructive methods which enables the 



comparison of values determined by different testing methods applied on the 
same specimen. 
 
The present work uses a method called resonant-frequency method [RILEM 
NDT-2, 1984] basing on the measurement of the natural frequencies of different 
vibration modes of concrete specimens. After calculating the modulus of 
elasticity and the shear modulus, the ultrasonic wave velocities can be derived. 
These velocities can be compared to the velocities measured directly by travel 
time measurements on the same specimens. 
 
Due to thermal effects, the elastic constants measured as mentioned above are 
different from those measured under static conditions. The so-called static 
constants are commonly determined from the slope of the stress-strain diagram 
of specimens under load. No general analytical correlation can be found but, as 
a rule of thumb, the dynamic elastic constants of concrete are by 10 % larger 
than the corresponding static constants; for detailed calculations see [ROST and 
MONECKE, 1988]. For this article, dealing with the dynamic constants, the 
designation dynamic will be omitted.  
 
Within the framework of the collaborative research center SFB 381 of the 
Deutsche Forschungsgemeinschaft DFG, the aim of this work was to provide 
reliable values of the elastic constants for a forward-modelling of ultrasonic 
wave propagation in concrete. Additionally, it gave the opportunity to test the 
reliability of the black-box testing device Grindo-Sonic, which is a popular tool 
in engineering. 
 
 
 
 
 
2. PHYSICAL BASES 
 



2.1 General relations 
 
The relations between stresses, strains, elastic constants and wave velocities in 
elastic materials have already been studied elsewhere [SCHREIBER et al., 1973, 
GROSSE and REINHARDT, 1993]. Here a brief summary: 
 
The general mass law for perfectly elastic materials can be expressed by a linear 
tensor function of the stress tensor Tik and the deformation tensor Dlm, related by 
the elastic stiffness tensor Ciklm, which has 81 matrix elements: 

 
T C Dik iklm lm=  

 
For isotropic materials, this tensor is reduced to 2 elastic constants. In 
continuum mechanics, usually the Lamé's constants λ and µ are used: 
 

( )Ciklm ik lm il km im kl= + +λδ δ µ δ δ δ δ  
 
Other sets of constants are frequently used in experimental mechanics, such as: 
 
1. Poisson's ratio ν and bulk modulus of elasticity κ, where 
 

( )ν λ
λ µ

=
+2   and   κ λ µ= + 2

3 . 

 
2. modulus of elasticity E and shear modulus G, where 
 

E = +
+

3 2λ µ
λ µ

µ   and  G = µ . 

Hence the following two relations for the compression wave velocity and the 
shear wave velocity hold: 
 



 v G G E
G Ep = −

−ρ
4
3   and  v G

s =
ρ  resp. (1) 

 
 
2.2 Vibration modes and elastic constants 
 
After exciting a structure by a mechanical impact, it starts to oscillate in the 
natural frequencies of its different vibration modes, according to the type of 
excitation. From an other point of view, these vibrations can be interpreted as 
standing waves. The relations between the resonant frequencies and the 
properties of the test specimens for simple geometries and homogeneous 
materials are a solved problem of continuum mechanics and can be found in 
general literature of both experimental and theoretical physics [e. g. BERGMANN 

and SCHAEFER, 1974]. These formulas are approximations for bar-like 
specimens of simple cross-sectional shapes, where the cross dimensions are 
small against the length of the specimen. When the ratio of length to cross 
dimensions is small, correction factors (R, C, T, resp.) must be added to the 
formulas. For ratios of down to 2, the following formulas can be applied 
[RILEM NDT-2, 1984, ASTM C215-91, 1991]: 
 
Torsional vibrations: 
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for specimens with circular cross-section, and 
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for specimens with rectangular cross-section. 

 
Longitudinal vibrations: 
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The moment of inertia of cross-section is calculated as 

I r= π 4

4  

for specimens with circular cross-section, and 

I bh=
3

12  

for specimens with rectangular cross-section. 
 

Flexural vibrations: 
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where the correction factor is [MARTINCEK, 1962]: 
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This correction factor is a function of the geometric dimensions of the test 
specimen given by q r l= / 2  for cylindrical, and q h l= / 12  for prismatic 
specimens. T as a function of q (n=1) is plotted in fig. 1 for different values of 
the Poisson's ratio. 
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Fig. 1: Correction factor T as a function of q 
 
Accepting an error of 1%, the correction factor C for longitudinal vibrations can 
be neglected, when the length of the specimen is at least three times the cross 
dimension. For the correction factor T of the flexural vibration, this ratio must 



exceed a value of 20. Due to the nature of the torsional vibration, the correction 
factor R may not be neglected in any case. 
 
Calculating the modulus of elasticity from the flexural frequencies, these 
formulas show a high sensitivity concerning the measurement of the dimensions 
of the specimen. Compared with that, this modulus can be calculated rather 
accurate from the longitudinal frequencies, as well as the shear modulus, which 
shows exactly the same dependency on the torsional frequencies. In addition it 
can be realized that the frequencies of the harmonics are integer multiples of the 
fundamental frequency for longitudinal  and torsional vibrations. The harmonics 

of flexural vibrations show an other behaviour and rise with a factor ( )2 1 2k +  
of the fundamental. 
 
 
3. EXPERIMENTAL 
 
The specimens must be supported in such a way, that they can vibrate freely in 
the type and mode of vibration that has to be investigated. This can be achieved 
by supporting the specimens exactly in their nodal planes. The positions of the 
extreme vibration nodes, e. g., can be found at  0,224l, 0,132l, 0,094l, 0,074l 
from the beam ends for the fundamental to the 3rd harmonic. To avoid the 
variation of the supports when testing the different modes, a simple foam rubber 
support was used, although then a higher damping of the vibrations had to be 
accepted. 
 
The vibration was excited by dropping a small steel ball or by hitting the 
specimen with a steel rod. Another possibility is the use of an impulse force 
hammer for excitation. This provides the possibility of a deconvolution of the 
measured signal. The generated mechanical vibrations are transformed by an 
accelerometer into electrical oscillations.  



The following figure shows the test setup with the positions of transducers and 
impactors as well as the nodal planes and the direction of movement for 
torsional, longitudinal, and flexural vibration, respectively. 
 

 

 

 
 
Fig. 2: Test setup for torsional, longitudinal, and flexural vibrations (from top to bottom) 
 
The Grindo-Sonic equipment [LEMMONS GMBH] uses an piezoelectric unit that 
has to be held against the specimen by hand. After digital signal processing, the 
fundamental frequency is determined by counting zero crossings in the recorded 



waveform. Finally, the double period is displayed in units of microseconds (so-
called “R-value“). 
 
A more sophisticated equipment was used to control the results obtained by the 
Grindo-Sonic device. It consists of an 486 personal computer with an ADC-
plugin board that operates at a sampling rate of 5 Mhz at 12 bit resolution. The 
signals were detected using a high sensitive piezoelectric accelerometer. This 
triaxial lightweight accelerometer (m=2,5 g) was coupled directly upon the 
specimen at the positions of maximum amplitude. As the transducer was small 
in the mass as compared with that of the specimens, its influence to the free 
vibration of the specimen could be neglected. Particular attention should be 
paid to the coupling of the transducer, that has to be proper and reproducible. 
Good results were obtained by means of a thin layer of wax. The recorded 
waveforms were transformed to frequency domain using a fast fourier 
transform; thus the whole spectrum could be analysed with care. 
 
For a simple evaluation of the results concerning the elastic parameters 
according to the formulas (1) to (4), an evaluation worksheet basing on 
Microsoft® Excel was implemented, where both the parameters and the 
velocities are calculated automatically. 
 
 
4. RESULTS 
 
Measurements were carried out on different concrete prisms; flexural and 
torsional mode were chosen because of their clear vibration forms. Impacts and 
transducers were positioned according to figure 2. Tests perfomed with the 
Grindo-Sonic device show a great reproducibility (statistical error 
approximately 1 ‰). No difference could be realized between the excitation by 
means of bar or rod. A typical test series of ten measurements on a concrete 
prism of PZ 35 F (CEM I) with aggregates 0 - 8 mm is shown in table 1. 



concrete prism measurement 18.4.95

length: 530,0 ± 0,5 mm density: 2226 ± 25 kg/m³
width: 99,5 ± 0,5 mm T-factor: 1,24
height: 100,0 ± 0,5 mm R-factor: 1,1842
mass: 11,741 ± 0,001 kg

test no. 1 2 3 4 5 6 7 8 9 10 average s.d.
R-value 1537,2 1535,8 1538,9 1539,2 1536,6 1539,8 1538,0 1537,2 1537,4 1537,9 1537,8
f flex  [Hz] 1301,1 1302,3 1299,6 1299,4 1301,6 1298,9 1300,4 1301,1 1300,9 1300,5 1300,6 1,0

test no. 1 2 3 4 5 6 7 8 9 10 average s.d.
R-value 904,0 902,1 901,0 900,8 900,5 901,3 900,5 901,4 901,2 900,2 901,3
f tor  [Hz] 2212,4 2217,0 2219,8 2220,2 2221,0 2219,0 2221,0 2218,8 2219,3 2221,7 2219,0 2,6

modulus of elasticity E: 35256 ±862 N/mm2

shear modulus G: 14587 ±195 N/mm2

v p  (calculated): 4218 ±55 m/s
v s  (calculated): 2560 ±5 m/s  
 

Tab. 1: Test carried out with the Grindo-Sonic Device 
 

Analogous measurements were carried out on the same specimens using the 
equipment designed at the FMPA. The results according to the previous 
Grindo-Sonic test are shown in table 2. The ADC-board was working at a 
sampling rate of 100 kHz recording 32 ksamples, what corresponds to a 
resolution of 3 Hz in the frequency domain. This resolution limit at the same 
time turned out to be the maximum error in determining the resonance frequen-
cies, as was confirmed by all the measurements. Hence, the accuracy of the 
FMPA device is comparable to that of the Grindo-Sonic device, or even better. 
 

concrete prism measurement 19.4.95

length: 530,0 ± 0,5 mm density: 2226 ± 25 kg/m³ a/b: 0,995
width: 99,5 ± 0,5 mm T-factor: 1,21 h/lsqr12 0,05447
height: 100,0 ± 0,5 mm R-factor: 1,1842
mass: 11,741 ± 0,001 kg

test no. 1 2 3 4 5 6 7 8 9 10
f flex  [Hz] 1303 1303 1303 1303 1303 1303 1303 1303 1303 1303

test no. 1 2 3 4 5 6 7 8 9 10
f tor  [Hz] 2222 2222 2222 2222 2222 2222 2222 2222 2222 2222

modulus of elasticity E: 34768 ±798 N/mm2

shear modulus G: 14626 ±162 N/mm2

v p  (calculated): 4137 ±40 m/s
v s  (calculated): 2563 ±2 m/s  

 

Tab. 2: Test carried out with the FMPA Device 



The frequency spectra for both types of vibration of this concrete specimen are 
displayed in figure 3 in order to give an idea of this kind of evaluation. 
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Fig. 3: Flexural (top) and torsional (bottom) vibration spectra  
 
The flexural spectrum shows the strong fundamental flexural peak at ~1300 Hz 
and a very small peak at ~4450 Hz according to the first harmonic of the 
torsional mode. In the torsional spectrum, the strong fundamental torsional peak 
at ~2200 Hz is followed by the first harmonic of the flexural mode at ~3100 Hz 
and the first torsional harmonic at~4450 Hz. 
 
To investigate this mixture of vibration types and modes, the transducer and the 
position of the excitation was varied freely over the whole specimen. A 
particularly interesting example of this series is shown in figure 4. Modes up to 
the fourth flexural and the sixth torsional harmonic could be identified. The 
identification of the modes was made easier by a calculation of the harmonics 
where the measured fundamental frequency is taken for exact (see table 3). 



0kHz 2kHz 4kHz 6kHz 8kHz 10kHz 12kHz 14kHz 16kHz 18kHz

0pW

0.1pW

0.2pW

0.3pW

0.4pW

0.5pW

0.6pW

0.7pW

0.8pW

0.9pW

1.0pW

1.1pW

1.2pW

 
 
Fig. 4: Frequency spectrum, torsionals marked by a circle �, flexurals by a square �   

 flexural torsional
 measured calculated measured calculated
fundamental 1303 Hz as measured 2222 Hz as measured
1. harmonic 3116 Hz 3619 Hz 4444 Hz 4444 Hz
2. harmonic 7538 Hz 7094 Hz ≈ 6674 Hz 6666 Hz
3. harmonic 11914 Hz 11727 Hz 8893 Hz 8888 Hz
4. harmonic ≈ 17685 Hz 17518 Hz 11090 Hz 11110 Hz
5. harmonic 13285 Hz 13332 Hz
6. harmonic 15698 Hz 15554 Hz

 
Tab. 3: Measured and calculated resonant frequencies according to fig. 4 
 
Additionally, the compression wave velocity of the concrete prism was 
measured directly to have another possibility for comparison. This was done 
using our equipment at maximum sampling rate and provided with a broadband 
transducer. We could measure 

 
vp = (4237 ± 49) m/s 

 
as statistical average of 20 tests with travel paths all over the specimen. 
 



5. DISCUSSION AND CONCLUSIONS 
 
The calculated moduli of 
 

E = 35300±800 N/mm2 and G = 14600±200 N/mm2 
 
lie within the range of values found in literature about this test method 

[VINKELOE, 1962].  The calculated moduli can be determined with an accuracy 
of below 2,5% and 1,5 %, resp. As the calculated velocities become 
independent of the cross dimensions and masses, their error becomes smaller 
than 0,5 % for vs and 1,5 % for vp (which is, however, depending on the height). 
The directly measured value of vp is a good confirmation of this fact and 
establishes this method as an alternative way of measuring wave velocities. 
 
Although the calculation formulas for the elastic constants can be applied to 
specimens of different shapes and dimensions, comparisons of results obtained 
from specimens with far different characteristics should be made with caution. 
Numerous tests with both test systems revealed the problems associated with 
measuring the resonance frequencies of bar-like specimens. First of all, much 
care has to be taken in positioning transducers and impacts. This is a basic pre-
condition for exciting and detecting the desired type and mode of vibration. 
Otherwise, a mixture of many vibration modes is created, which makes 
impossible a proper identification of the single modes and thus any evaluation 
of the test. As tests with the FMPA device showed, despite all care, always 
harmonics and other vibration types are being excited (see fig. 3) due to mode 
conversion in inhomogeneous areas. What is more, the two different ways of 
excitation are equivalent for the frequency range in question. In general, the 
impact time which is a function of hardness and size of the impactor determines 
the frequency range.  
 
All these effects could only be studied and controlled by means of the FMPA 
system. Thus, for tests and operators with a scientific background, this is the 



system of first choice, as it provides control of all parameters that are 
influencing the tests. 
 
The comparison between the Grindo-Sonic device and the FMPA system 
showed, within the limits of error, a good agreement in the determined 
resonance frequencies. This is a confirmation of the quality of the Grindo-Sonic 
system. It facilitates simple and fast testing due to the fact that no coupling of 
the transducer and no additional signal analysing is required. No control 
whatever is possible to check the results. In case of uncertainties regarding the 
measured parameters, this device is not able to eliminate errors caused by the 
operator. Hence, it is a good tool for quality control, where variations from 
well-known values of the elastic parameters have to be measured. On the other 
hand, is not suitable for measurements at materials where the elastic moduli are 
unknown. 
 
Parameters that were not considered in this work are the temperature 
[SCHREIBER et al., 1973] and the moisture [ASTM C215-91, 1991] of the 
specimens. 
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